问题 选择题

将4个相同的白球和5个相同的黑球全部 放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只 放入2个白球和2个黑球,则所有不同的放法种数为(  )

A.3

B.6

C.12

D.18

答案

首先把四个白球排列,用2块挡板隔开分成3份,共有C32=3种结果,

再把五个黑球用2块挡板分开,共有C42=6种结果,

根据分步计数原理知共有3×6=18种结果,

其中同时一个盒子中只放入2个白球和2个黑球的情况有3×2=6种情况;

则满足题意的有18-6=12种;

故选C.

填空题
单项选择题