已知f(x)=
(Ⅰ)求实数a的值组成的集合A; (Ⅱ)设关于x的方程f(x)=
|
(Ⅰ)f'(x)=
=4+2ax-2x2 (x2+2)2
,-2(x2-ax-2) (x2+2)2
∵f(x)在[-1,1]上是增函数,
∴f'(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.①
设φ(x)=x2-ax-2,
方法一:φ
①⇔
⇔-1≤a≤1,φ(1)=1-a-2≤0 φ(-1)=1+a-2≤0
∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.方法二:
①⇔
或
≥0a 2 φ(-1)=1+a-2≤0
<0a 2 φ(1)=1-a-2≤0
⇔0≤a≤1或-1≤a≤0
⇔-1≤a≤1.
∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.
(Ⅱ)由
=2x-a x2+2
,得x2-ax-2=0,∵△=a2+8>01 x
∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,
从而|x1-x2|=
=( x1+x2)2- 4x1x2
.a2+8
∵-1≤a≤1,∴|x1-x2|=
≤3.a2+8
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.②
设g(t)=m2+tm-2=mt+(m2-2),
方法一:
②⇔g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0,
⇔m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
方法二:
当m=0时,②显然不成立;
当m≠0时,
②⇔m>0,g(-1)=m2-m-2≥0或m<0,g(1)=m2+m-2≥0
⇔m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.