问题
选择题
已知
|
答案
∵
+1 a
+1 b
=1 c
=0,bc+ac+ab abc
∴bc+ac+ab=0,
又∵(a+b+c)2,
=a2+b2+c2+2(bc+ac+ab),
=1+0,
=1;
∴a+b+c=±1.
故选C.
已知
|
∵
+1 a
+1 b
=1 c
=0,bc+ac+ab abc
∴bc+ac+ab=0,
又∵(a+b+c)2,
=a2+b2+c2+2(bc+ac+ab),
=1+0,
=1;
∴a+b+c=±1.
故选C.