问题 解答题
设函数fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
(n∈N*)

(Ⅰ)研究函数f2(x)的单调性;
(Ⅱ)判断fn(x)=0的实数解的个数,并加以证明.
答案

(Ⅰ)f2(x)=1-x+

1
2
x2-
1
3
x3,f2(x)=-1+x-x2=-(x-
1
2
)
2
-
3
4
<0

所以f2(x)在R单调递减.

(Ⅱ)f1(x)=1-x有唯一实数解x=1

fn(x)=1-x+

x2
2
-
x3
3
+…-
x2n-1
2n-1
,n∈N*

得fn(x)=-1+x-x2+…+x2n-3-x2n-2

(1)若x=-1,则fn(x)=-(2n-1)<0.

(2)若x=0,则fn(x)=-1<0.

(3)若x≠-1,且x≠0时,则fn(x)= -

x2n-1+1
x+1

①当x<-1时,<0,x2n-1+1<0,fn(x)<0.

②当x>-1时,fn(x)<0

综合(1),(2),(3),得fn(x)<0,

即fn(x)在R单调递减.

又fn(x)=1>0,fn(2)=(1-2)+(

22
2
-
23
3
)+(
24
4
-
25
5
)+…+(
22n-2
2n-2
-
22n-1
2n-1
)

=-1+(

1
2
-
2
3
)22+(
1
4
-
2
5
)24+…+(
1
2n-2
-
2
2n-1
)22n-2

=-1-

1
2•3
22-
3
4•5
24-…-
2n-3
(2n-2)(2n-1)
22n-2<0,

所以fn(x)在(0,2)有唯一实数解,从而fn(x)在R有唯一实数解.

综上,fn(x)=0有唯一实数解.

单项选择题
问答题 简答题