问题
解答题
设函数fn(x)=1-x+
(Ⅰ)研究函数f2(x)的单调性; (Ⅱ)判断fn(x)=0的实数解的个数,并加以证明. |
答案
(Ⅰ)f2(x)=1-x+
x2-1 2
x3,f2′(x)=-1+x-x2=-(x-1 3
)2-1 2
<0,3 4
所以f2(x)在R单调递减.
(Ⅱ)f1(x)=1-x有唯一实数解x=1
由fn(x)=1-x+
-x2 2
+…-x3 3
,n∈N*,x2n-1 2n-1
得fn′(x)=-1+x-x2+…+x2n-3-x2n-2.
(1)若x=-1,则fn′(x)=-(2n-1)<0.
(2)若x=0,则fn′(x)=-1<0.
(3)若x≠-1,且x≠0时,则fn′(x)= -
.x2n-1+1 x+1
①当x<-1时,<0,x2n-1+1<0,fn′(x)<0.
②当x>-1时,fn′(x)<0
综合(1),(2),(3),得fn′(x)<0,
即fn(x)在R单调递减.
又fn(x)=1>0,fn(2)=(1-2)+(
-22 2
)+(23 3
-24 4
)+…+(25 5
-22n-2 2n-2
)22n-1 2n-1
=-1+(
-1 2
)22+(2 3
-1 4
)24+…+(2 5
-1 2n-2
)22n-22 2n-1
=-1-
22-1 2•3
24-…-3 4•5
22n-2<0,2n-3 (2n-2)(2n-1)
所以fn(x)在(0,2)有唯一实数解,从而fn(x)在R有唯一实数解.
综上,fn(x)=0有唯一实数解.