问题
解答题
设f(x)=ex(ax2+x+1). (I)若a>0,讨论f(x)的单调性; (Ⅱ)x=1时,f(x)有极值,证明:当θ∈[0,
|
答案
(I)f′(x)=ex(ax2+x+1)+ex(2ax+1)=ex[ax2+(2a+1)x+2]=aex(x+
)(x+2).1 a
(i)当a=
时,f′(x)=1 2
ex(x+2)2≥0恒成立,∴函数f(x)在R上单调递增.1 2
(ii)当0<a<
时,则1 2
>2,即-1 a
<-2.1 a
由f′(x)>0,解得x>-2或x<-
;当f′(x)<0时,解得-1 a
<x<-2.1 a
∴函数f(x)在区间(-∞,-
)和(-2,+∞)上单调递增;在(-1 a
,-2)上单调递减.1 a
(iii)当a>
时,则1 2
<2,即-1 a
>-2.1 a
由f′(x)>0,解得x>-
或x<-2;由f′(x)<0,解得-2<x<-1 a
.1 a
∴函数f(x)在区间(-∞,-2)和(-
,+∞)上单调递增;在(-2,-1 a
)上单调递减.1 a
(II)∵当x=1时,f(x)有极值,∴f′(1)=0.∴3ae(1+
)=0,解得a=-1.1 a
∴f(x)=ex(-x2+x+1),f′(x)=-ex(x-1)(x+2).
令f′(x)>0,解得-2<x<1,∴f(x)在[-2,1]上单调递增,
∵sinθ,cosθ∈[0,1],∴|f(sinθ)-f(cosθ)|≤f(1)-f(0)=e-1<2.