(I)函数f(x)的单调减区间(-∞,-1),函数f(x)的单调增区间[-1,0),(0,+∞);
(II)由导数的几何意义知,点A处的切线的斜率为f′(x1),点B处的切线的斜率为f′(x2),
函数f(x)的图象在点A,B处的切线互相垂直时,有f′(x1)f′(x2)=-1,
当x<0时,(2x1+2)(2x2+2)=-1,∵x1<x2<0,∴2x1+2<0,2x2+2>0,
∴x2-x1=[-(2x1+2)+(2x2+2)]≥=1,
∴若函数f(x)的图象在点A,B处的切线互相垂直,有x2-x1≥1;
(III)当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2,
当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为y-(x 12+2x1+a)=(2x1+2)(x-x1);
当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y-lnx2=(x-x2);
两直线重合的充要条件是,
由①及x1<0<x2得0<<2,由①②得a=lnx2+(-1)2-1=-ln+(-2)2-1,
令t=,则0<t<2,且a=t2-t-lnt,设h(t)=t2-t-lnt,(0<t<2)
则h′(t)=t-1-=<0,∴h(t)在(0,2)为减函数,
则h(t)>h(2)=-ln2-1,∴a>-ln2-1,
∴若函数f(x)的图象在点A,B处的切线重合,a的取值范围(-ln2-1,+∞).