问题
选择题
将面积为2的长方形ABCD沿对角线AC折起,使二面角D-AC-B的大小为α(0°<α<180°),则三棱锥D-ABC的外接球的体积的最小值是( )
|
答案
将面积为2的长方形ABCD沿对角线AC折起,使二面角D-AC-B的大小为α(0°<α<180°),则三棱锥D-ABC的外接球的球心就是AC 的中点,三棱锥D-ABC的外接球的体积的最小,就是球的半径最小,就是AC最短,由题意可设长方形的长为:a,宽为:b,所以ab=2,AC=
≥a2+b2
=2,此时a=b=2ab
,AC=2,球的半径为:1,2
三棱锥D-ABC的外接球的体积的最小值是:
.4π 3
故选C