问题
选择题
若
|
答案
若
C | mn+2 |
C | m+1n+2 |
m+2n+2 |
则有
C | m+1n+2 |
C | m+2n+2 |
∴n+2=m+1+m+2,
解得 n=2m+1.
再根据
C | mn+2 |
C | m+1n+2 |
可得
C | m2m+3 |
C | m+12m+3 |
即
(2m+3)! |
m!•(m+3)! |
(2m+3)! |
(m+1)!•(m+2)! |
即
m+1 |
m+3 |
3 |
5 |
解得m=2,
∴n=2m+1=5,
故选:C.
若
|
若
C | mn+2 |
C | m+1n+2 |
m+2n+2 |
则有
C | m+1n+2 |
C | m+2n+2 |
∴n+2=m+1+m+2,
解得 n=2m+1.
再根据
C | mn+2 |
C | m+1n+2 |
可得
C | m2m+3 |
C | m+12m+3 |
即
(2m+3)! |
m!•(m+3)! |
(2m+3)! |
(m+1)!•(m+2)! |
即
m+1 |
m+3 |
3 |
5 |
解得m=2,
∴n=2m+1=5,
故选:C.