问题 解答题
已知函数f(x)=
2
3
x(x2-3ax-
9
2
)(a∈R)
(1)若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,求m的值.
(2)若函数f(x)在(1,2)内是增函数,求a的取值范围.
答案

(1)∵f(x)=

2
3
x3-2ax2-3x,

∴f′(x)=2x2-4ax-3,

则过点P(1,m)的切线斜率为k=f′(1)=-1-4a,

又∵切线方程为3x-y+b=0,

∴-1-4a=3,即a=-1

∴f(x)=

2
3
x3+2x2-3x,

又∵P(1,m)在f(x)的图象上,

∴m=-

1
3

(2)∵函数f(x)在(1,2)内是增函数,

∴f′(x)=2x2-4ax-3≥0对一切x∈(1,2)恒成立,

即4ax≤2x2-3,

∴a≤

x
2
-
3
4x

∵y=

x
2
-
3
4x
在(1,2)内是增函数,

x
2
-
3
4x
∈(-
1
4
5
8
),

∴a≤-

1
4

单项选择题
问答题 简答题