问题
填空题
已知二次函数y=ax2+bx+c(其中a是正整数)的图象经过点A(-1,4)与点B(2,1),并且与x轴有两个不同的交点,则b+c的最大值为______.
答案
由于二次函数的图象过点A(-1,4),点B(2,1),
所以
,a-b+c=4 4a+2b+c=1
解得b=-a-1 c=3-2a.
因为二次函数图象与x轴有两个不同的交点,
所以△=b2-4ac>0,
(-a-1)2-4a(3-2a)>0,即(9a-1)(a-1)>0,
由于a是正整数,故a≥2,
又因为b+c=-3a+2≤-4,
故b+c的最大值为-4.
故答案为-4.