抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值为______.
设A,B,C三点的坐标分别为(x1,0)、(x2,0)、(0,c),且x1<x2,
∵抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,线段AB的长为1,
∴x2-x1=1,
∵△ABC的面积为1,即
(x2-x1)•|c|=1,1 2
∴c=±2,
∵x1>0、x2>0,
∴x1•x2,>0,
∵x1•x2=c,
∴c=2,
∴
,x1+x2=-b x1•x2=2 x2-x1=1
解得b=±3,
∵x1>0、x2>0,
∴x1+x2>0,
∵x1+x2=-b,
∴b<0,
∴b=-3.
故答案为:-3.