问题
解答题
已知函数f(x)=
(Ⅰ)若a=2,求函数f(x)在(1,f(1))处的切线方程; (Ⅱ)讨论函数f(x)的单调区间. |
答案
(Ⅰ)当a=2时,f(x)=
x2-2x+lnx1 2
∴f′(x)=x-2+1 x
∴f(1)=
-2=-1 2
,f'(1)=03 2
切线方程为y=-
…(4分)3 2
(Ⅱ)定义域(0,+∞)
f′(x)=x-a+
=a-1 x
=x2-ax+(a-1) x (x-1)(x+1-a) x
令f'(x)=0,解得x1=1,x2=a-1
①当a=2时,f'(x)≥0恒成立,则(0,+∞)是函数的单调递增区间
②当a>2时,a-1>1,
在区间(0,1)和(a-1,+∞)上,f'(x)>0;在(1,a-1)区间上f'(x)<0,
故f(x)的单调递增区间是(0,1)和(a-1,+∞),单调递减区间是(1,a-1)
③当1<a<2时,在区间(0,a-1)和(1,+∞)上,f'(x)>0;在(a-1,1)区间上f'(x)<0,
故f(x)的单调递增区间是(0,a-1)和(1,+∞),单调递减区间是(a-1,1)
④当a≤1时,a-1≤0,在区间(0,1)上f'(x)<0,在区间(1,+∞)上,f'(x)>0,
故f(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).
总之,当a=2时,(0,+∞)是函数的单调递增区间
②当a>2时,f(x)的单调递增区间是(0,1)和(a-1,+∞),单调递减区间是(1,a-1)
③当1<a<2时,f(x)的单调递增区间是(0,a-1)和(1,+∞),单调递减区间是(a-1,1)
④当a≤1时,f(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).…(13分)