问题 解答题

设函数f(x)=x3-kx2+x(k∈R).

(1)当k=1时,求函数f(x)的单调区间;

(2)当k<0时,求函数f(x)在[k,-k]上的最小值m和最大值M.

答案

f′(x)=3x2-2kx+1

(1)当k=1时f′(x)=3x2-2x+1,

∵△=4-12=-8<0,∴f′(x)>0,f(x)在R上单调递增.

(2)当k<0时,f′(x)=3x2-2kx+1,其开口向上,对称轴x=

k
3
,且过(0,1)

(i)当△=4k2-12=4(k+

3
)(k-
3
)≤0,即-
3
≤k<0
时,f′(x)≥0,f(x)在[k,-k]上单调递增,

从而当x=k时,f(x)取得最小值m=f(k)=k,

当x=-k时,f(x)取得最大值M=f(-k)=-k3-k3-k=-2k3-k.

(ii)当△=4k2-12=4(k+

3
)(k-
3
)>0,即k<-
3
时,令f′(x)=3x2-2kx+1=0

解得:x1=

k+
k2-3
3
x2=
k-
k2-3
3
,注意到k<x2<x1<0,

∴m=min{f(k),f(x1)},M=max{f(-k),f(x2)},

f(x1)-f(k)=

x31
-k
x21
+x1-k=(x1-k)(
x21
+1)>0,∴f(x)的最小值m=f(k)=k,

f(x2)-f(-k)=

x32
-k
x22
+x2-(-k3-k•k2-k)=(x2+k)[(x2-k)2+k2+1]<0,

∴f(x)的最大值M=f(-k)=-2k3-k.

综上所述,当k<0时,f(x)的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k

解法2:(2)当k<0时,对∀x∈[k,-k],都有f(x)-f(k)=x3-kx2+x-k3+k3-k=(x2+1)(x-k)≥0,

故f(x)≥f(k).

f(x)-f(-k)=x3-kx2+x+k3+k3+k=(x+k)(x2-2kx+2k2+1)=(x+k)[(x-k)2+k2+1]≤0,

故f(x)≤f(-k),而 f(k)=k<0,f(-k)=-2k3-k>0.

所以 f(x)max=f(-k)=-2k3-k,f(x)min=f(k)=k.

选择题
判断题