设函数f(x)=x3-kx2+x(k∈R).
(1)当k=1时,求函数f(x)的单调区间;
(2)当k<0时,求函数f(x)在[k,-k]上的最小值m和最大值M.
f′(x)=3x2-2kx+1
(1)当k=1时f′(x)=3x2-2x+1,
∵△=4-12=-8<0,∴f′(x)>0,f(x)在R上单调递增.
(2)当k<0时,f′(x)=3x2-2kx+1,其开口向上,对称轴x=
,且过(0,1)k 3
(i)当△=4k2-12=4(k+
)(k-3
)≤0,即-3
≤k<0时,f′(x)≥0,f(x)在[k,-k]上单调递增,3
从而当x=k时,f(x)取得最小值m=f(k)=k,
当x=-k时,f(x)取得最大值M=f(-k)=-k3-k3-k=-2k3-k.
(ii)当△=4k2-12=4(k+
)(k-3
)>0,即k<-3
时,令f′(x)=3x2-2kx+1=03
解得:x1=
,x2=k+ k2-3 3
,注意到k<x2<x1<0,k- k2-3 3
∴m=min{f(k),f(x1)},M=max{f(-k),f(x2)},
∵f(x1)-f(k)=
-kx 31
+x1-k=(x1-k)(x 21
+1)>0,∴f(x)的最小值m=f(k)=k,x 21
∵f(x2)-f(-k)=
-kx 32
+x2-(-k3-k•k2-k)=(x2+k)[(x2-k)2+k2+1]<0,x 22
∴f(x)的最大值M=f(-k)=-2k3-k.
综上所述,当k<0时,f(x)的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k
解法2:(2)当k<0时,对∀x∈[k,-k],都有f(x)-f(k)=x3-kx2+x-k3+k3-k=(x2+1)(x-k)≥0,
故f(x)≥f(k).
f(x)-f(-k)=x3-kx2+x+k3+k3+k=(x+k)(x2-2kx+2k2+1)=(x+k)[(x-k)2+k2+1]≤0,
故f(x)≤f(-k),而 f(k)=k<0,f(-k)=-2k3-k>0.
所以 f(x)max=f(-k)=-2k3-k,f(x)min=f(k)=k.