问题
解答题
已知函数f(x)=alnx-(x-1)2-ax(常数a∈R). (Ⅰ)求f(x)的单调区间; (Ⅱ)设a>0.如果对于f(x)的图象上两点P1(x1,f(x1)),P2(x2,f(x2))(x1<x2),存在x0∈(x1,x2),使得f(x)的图象在x=x0处的切线m∥P1P2,求证:x0<
|
答案
( I)f(x)的定义域为(0,+∞),
f′(x)=
a |
x |
(1-x)(2x+a) |
x |
①a≥0时,f(x)的增区间为(0,1),减区间为(1,+∞)
②-2<a<0时,f(x)的增区间为(-
a |
2 |
a |
2 |
③a=-2时,f(x)减区间为(0+∞)
④a<-2时,f(x)的增区间为(1,-
a |
2 |
a |
2 |
( II)由题意
|
aln
| ||
x2-x1 |
又:f′(
x1+x2 |
2 |
2a |
x1+x2 |
f′(x)=
a |
x |
要证x0<
x1+x2 |
2 |
x1+x2 |
2 |
即
aln
| ||
x2-x1 |
2a |
x1+x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令t=
x2 |
x1 |
2(t-1) |
t+1 |
1 |
t |
4 |
(t+1)2 |
(t-1)2 |
t(t+1)2 |
∴g(t)在(1,+∞)为增函数,
∴g(t)>g(1)=0,
∴lnt>
2(t-1) |
t+1 |
lnt |
t-1 |
2 |
t+1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
∴x0<
x1+x2 |
2 |