问题 填空题
若函数f(x)=x3-ax2(a>0)在区间(
20
3
,+∞)
上是单调递增函数,则使方程f(x)=1000有整数解的实数a的个数是______.
答案

对f(x)求导得f'(x)=3x2+2ax

令f'(x)≥0以求原函数的单调增区间得3x2+2ax≥0,解得x≤0或x≥(2/3)a.

令f'(x)≤0以求原函数的单调减区间得3x2+2ax≤0,解得0≤x≤(2/3)a.

由题意知,区间(

20
3
,+∞)处于增区间,故
2
3
a≤
20
3
,结合已知条件a>0,解得0<a≤10.

令f(x)=0解得x=0或x=a.

结合上面的分析可知,在(-∞,a]上,f(x)≤0,在(a,+∞)上,f(x)>0,所以f(x)=1000的解只能在(a,+∞)上.

由x3-ax2=1000,变形得a=x-

1000
x2

记g(x)=x-

1000
x2
,因为0<a≤10,所以0<g(x)≤10.

观察知,g(x)在x>0上是增函数(求导也可得出),

经试算,有g(10)=0,g(14)=8+

44
49
,g(15)=10+
5
9
,可见0<g(x)≤10的解在区间(10,15)上,所以x的整数解只可能是11、12、13、14共4个,

而a=g(x),g(x)为增函数,所以相应地,a值也只有4个

故答案为4

单项选择题
单项选择题 B1型题