问题
选择题
已知函数f(x)=x2-2(-1)klnx(k∈N*)存在极值,则k的取值集合是( )
A.{2,4,6,8,…}
B.{0,2,4,6,8,…}
C.{l,3,5,7,…}
D.N*
答案
∵k∈N*,
①当k的取值集合是{2,4,6,8,…}时,函数f(x)=x2-2lnx,
∴f'(x)=2x-
=2 x
,由f'(x)=0得x=-1,或x=1.2(x+1)(x-1) x
当x∈(-∞,-1)或x∈(1,+∞)时,y′>0;
当x∈(-1,1)时,y′<0
∴当x=-1和x=1是函数的极值点.
②当k的取值集合是{l,3,5,7,…}时,函数f(x)=x2+2lnx,
∴f'(x)=2x+
=2 x
,由f'(x)=0得x∈∅.故此时原函数不存在极值点.2(x2+1) x
故选A.