问题
解答题
已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.
(1)求a、b的值;
(2)求f(x)的单调区间;
(3)求f(x)在[0,4]上的最大值与最小值.
答案
(1)由f′(1)=3+2a+b=0,f(1)=1+a+b+a2=10,
得a=4,或a=-3
∵a>0,∴a=4,
b=-11(经检验符合)
(2)f(x)=x3+4x2-11x+16,f'(x)=3x2+8x-11,
由f′(x)=0得x1=-
,x2=111 3
所以令f′(x)>0得x<-
或x> 1;令f′(x)<0得-11 3
<x<111 3
所以f(x)在(-∞,-
),(1,+∞)上单调递增,(-11 3
,1)上单调递减.11 3
(3)由(2)知:f(x)在(0,1)上单调递减,(1,4)上单调递增,
又因为f(0)=16,f(1)=10,f(4)=100,
所以f(x)的最大值为100,最小值为1020.