已知函数f(x)=2aln(1+x)-x(a>0). (I)求f(x)的单调区间和极值; (II)求证:4lge+
|
(I)定义域为(-1,+∞)f′(x)=
-12a 1+x
令f'(x)>0⇒-1<x<2a-1,令f'(x)<0⇒x>2a-1
故f(x)的单调递增区间为(-1,2a-1)
f(x)的单调递减区间为(2a-1,+∞)
f(x)的极大值为2aln2a-2a+1
(II)证:要证4lge+
+lge 2
++lge 3
>lgelge n
(n+1)(1+n)n nn
即证4+
+1 2
++1 3
>1 n lge
(n+1)(1+n)n nn lge
即证4+
+1 2
++1 3
>lne1 n
(n+1)(1+n)n nn
即证1+
+1 2
++1 3
+3>ln(n+1)+(1+1 n
)n1 n
令a=
,由(I)可知f(x)在(0,+∞)上递减1 2
故f(x)<f(0)=0
即ln(1+x)<x
令x=
(n∈N*)1 n
故ln(1+
)=ln1 n
=ln(n+1)-lnn<n+1 n 1 n
累加得,ln(n+1)<1+
+1 2
++1 3 1 n
ln(1+
)<1 n
⇒ln(1+1 n
)n<1⇒(1+1 n
)n<e<31 n
故1+
+1 2
++1 3
+3>ln(n+1)+(1+1 n
)n,得证1 n