问题
解答题
已知函数f(x)=(ax+1)a-x,a>0且a≠1,讨论f(x)的单调性,并求出极值点x0.
答案
f'(x)=aa-x-a-xlna(ax+1)
令f'(x)=0,解得x=a-lna alna
当0<a<1时,令f'(x)<0,解得x∈(-∞,
)a-lna alna
令f'(x)>0,解得x∈(
,+∞)a-lna alna
∴f(x)在(-∞,
)上单调递减,在(a-lna alna
,+∞)上单调递增,a-lna alna
当a>1时,令f'(x)>0,解得x∈(-∞,
)a-lna alna
令f'(x)<0,解得x∈(
,+∞)a-lna alna
f(x)在上(
,+∞)单调递减,在(-∞,a-lna alna
)上单调递增.a-lna alna
极值点x0=a-lna alna