问题 选择题

在长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,则四棱锥B1-A1BCD1的体积是(  )

A.10

B.20

C.30

D.60

答案

以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,

∵长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,

∴A1(5,0,3),B(5,4,0),D1(0,0,3),B1(5,4,3),

A1D1
 =(-5,0,0),
A1B
=(0,4,-3)

设平面A1BCD1的法向量为

n
=(x,y,z),

-5x=0
4y-3z=0
,∴
n
=(0,3,4)

A1B1
=(0,4,0),

∴点B1到平面A1BCD1的距离d=

|0+12+0|
0+9+16
=
12
5

长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,

A1B=

AA12+AB2
=
9+16
=5,

∴S四边形A1BCD1=A1D1×A1B=5×5=25,

∴四棱锥B1-A1BCD1的体积V四棱锥B1-A1BCD1=

1
3
×S四边形A1BCD1×
12
5
=
1
3
×25×
12
5
=20.

故选B.

填空题
问答题