问题
选择题
在长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,则四棱锥B1-A1BCD1的体积是( )
A.10
B.20
C.30
D.60
答案
以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,
∵长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,
∴A1(5,0,3),B(5,4,0),D1(0,0,3),B1(5,4,3),
∴
=(-5,0,0),A1D1
=(0,4,-3),A1B
设平面A1BCD1的法向量为
=(x,y,z),n
则
,∴-5x=0 4y-3z=0
=(0,3,4),n
∵
=(0,4,0),A1B1
∴点B1到平面A1BCD1的距离d=
=|0+12+0| 0+9+16
,12 5
长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,
∴A1B=
=AA12+AB2
=5,9+16
∴S四边形A1BCD1=A1D1×A1B=5×5=25,
∴四棱锥B1-A1BCD1的体积V四棱锥B1-A1BCD1=
×S四边形A1BCD1×1 3
=12 5
×25×1 3
=20.12 5
故选B.