问题
解答题
已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.
答案
(1)由f(x)=x3+ax2+bx,得f'(x)=3x2+2ax+b.
∵1和-1是函数f(x)=x3+ax2+bx的两个极值点,
∴f'(1)=3+2a+b=0,f'(-1)=3-2a+b=0,解得a=0,b=-3.
(2)∵由(1)得,f(x)=x3-3x,
∴g'(x)=f(x)+2=x3-3x+2=(x-1)2(x+2),解得x1=x2=1,x3=-2.
∵当x<-2时,g'(x)<0;当-2<x<1时,g'(x)>0,
∴x=-2是g(x)的极值点.
∵当-2<x<1或x>1时,g'(x)>0,∴x=1不是g(x)的极值点.
∴g(x)的极值点是-2.