问题
选择题
已知函数f(x)=2x+lnx,若an=0.1n(n∈N*)则使得|f(an)-2012|取得最小值的n的值是( )
A.100
B.110
C.11
D.10
答案
可知|f(an)-2012|≥0
由题意,an=0.1n(n∈N*)则使得|f(an)-2012|取得最小值,
求出f(an)与2012最接近的n值,
函数f(x)=2x+lnx,若an=0.1n(n∈N*),
f(an)=20.1n+ln(0.1n)
∵210=1024,211=2048>2012,
ln10∈(2,3),ln11∈(2,3),
∴n=110时,20.1n+ln(0.1n)与2012最接近,
故选B.