问题
解答题
定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;②f′(x)是偶函数; ③f(x)在x=0处的切线与直线y=x+2垂直. (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)设g(x)=lnx-
|
答案
(Ⅰ)f'(x)=3ax2+2bx+c
∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
∴f′(1)=3a+2b+c=0①
由f′(x)是偶函数得:b=0②
又f(x)在x=0处的切线与直线y=x+2垂直,f'(0)=c=-1③]
由①②③得:a=
1 |
3 |
1 |
3 |
(Ⅱ)由已知得:存在x∈[1,e],使lnx-
m |
x |
即存在x∈[1,e],使m>xlnx-x3+x
设M(x)=xlnx-x3+x
|
1 |
x |
1-6x2 |
x |
于是,H(x)≤H(1),即H(x)≤-1<0,即M'(x)<0∴M(x)在[1,e]上递减,∴M(x)≥M(e)=2e-e3
于是有m>2e-e3为所求.