问题 解答题

已知函数f(x)=2ax3-3x2,其中a>0.

(Ⅰ)求证:函数f(x)在区间(-∞,0)上是增函数;

(Ⅱ)若函数g(x)=f(x)+f(x)(x∈[0,1])在x=0处取得最大值,求a的取值范围.

答案

(Ⅰ)证明:求导函数f′(x)=6x(ax-1).

因为a>0且x<0,所以f′(x)>0.

所以函数f(x)在区间(-∞,0)上是增函数.                  …(6分)

(Ⅱ)由题意,g(x)=2ax3+(6a-3)x2-6x,(x∈[0,1]),则g′(x)=6[ax2+(2a-1)x-1].…(8分)

令g′(x)=0,即ax2+(2a-1)x-1=0.①

由于△=4a2+1>0,可设方程①的两个根为x1,x2

由①得x1x2=-

1
a

由于a>0,所以x1x2<0,不妨设x1<0<x2,g′(x)=6a(x-x1)(x-x2).

当0<x2<1时,g(x2)为极小值,

所以在区间[0,1]上,g(x)在x=0或x=1处取得最大值;

当x2≥1时,由于g(x)在区间[0,1]上是单调递减函数,所以最大值为g(0),

综上,函数g(x)只能在x=0或x=1处取得最大值.      …(10分)

又已知g(x)在x=0处取得最大值,所以g(0)≥g(1),

即0≥8a-9,解得a≤

9
8

又因为a>0,所以a∈(0,

9
8
].                                      …(13分)

单项选择题
多项选择题