问题
解答题
已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16
(1)求a、b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最大值.
答案
(1)因为f(x)=ax3+bx+c,故f′(x)=3ax2+b,
由于f(x)在点x=2处取得极值,故有
,即f′(2)=0 f(2)=c-16
,12a+b=0 8a+2b+c=c-16
化简得
,解得12a+b=0 4a+b=-8
.a=1 b=-12
(2)由(1)知f(x)=x3-12x+c,f′(x)=3x2-12,
令f′(x)=0,得x=2或x=-2,
当x∈(-∞,-2)时,f′(x)>0,f(x)在∈(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,f(x)在(2,+∞)上为增函数.
由此可知f(x)在x=-2处取得极大值f(-2)=16+c,f(x)在x=2处取得极小值f(2)=-16+c.
由题意知16+c=28,解得c=12.此时,f(-3)=21,f(3)=3,f(2)=-4,
所以f(x)在[-3,3]上的最大值为28.