问题
填空题
函数y=2x3-6x2-18x+7的单调减区间为______.
答案
∵函数y=f(x)=2x3-6x2-18x+7,
∴f′(x)=6x2-12x-18,
∴由6x2-12x-18<0可得:
∴x∈(-1,3).
故答案为:(-1,3).
函数y=2x3-6x2-18x+7的单调减区间为______.
∵函数y=f(x)=2x3-6x2-18x+7,
∴f′(x)=6x2-12x-18,
∴由6x2-12x-18<0可得:
∴x∈(-1,3).
故答案为:(-1,3).