问题 选择题
对于任意的t∈[1,2],函数f(x)=x3+(2+
m
2
)x2-2x
在区间(t,3)上总存在极值,求m的范围(  )
A.-
37
3
<m<-5
B.-
37
3
<m<-9
C.-9<m<-5D.-9<m<0
答案

由函数f(x)=x3+(2+

m
2
)x2-2x,得:f(x)=3x2+(4+m)x-2.

要使对于任意的t∈[1,2],函数f(x)=x3+(2+

m
2
)x2-2x在区间(t,3)上总存在极值,

说明导函数f(x)的值在(t,3)上有正有负,

因为二次函数f(x)=3x2+(4+m)x-2的图象开口向上,且横过定点(0,-2),

所以,只需

f(t)<0
f(3)>0
,即
3t2+(4+m)t-2<0①
27+3(4+m)-2>0②

由①得:m<-3t+

2
t
-4(1≤t≤2).而(-3t+
2
t
-4)min=-3×2+
2
2
-4=-9

所以,m<-9.

由②得:m>-

37
3

所以,使得对于任意的t∈[1,2],函数f(x)=x3+(2+

m
2
)x2-2x在区间(t,3)上总存在极值的m的范围是-
37
3
<m<-9

故选B.

单项选择题
填空题