问题 选择题
已知正三棱锥P-ABC中,点P,A,B,C都在半径为
3
的球面上,若PA,PB,PC两两互相垂直,则三棱锥P-ABC的体积为(  )
A.
3
4
B.
1
2
C.
4
3
D.2
答案

∵空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,

则PA、PB、PC可看作是正方体的一个顶点发出的三条棱,

所以过空间四个点P、A、B、C的球面即为的正方体的外接球,球的直径即是正方体的对角线,

设PA=PB=PC=a,

3
a=2
3
,∴a=2,

则三棱锥P-ABC的体积为

1
6
a3=
4
3

故选C.

填空题
单项选择题