(1)f'(x)=1-mln(x+1)-m
=1 ①m=0时,f'(x)=1>0,
∴f(x)在定义域(-1,+∞)是增函数(2分)
=2 ②m>0时,令f'(x)>0得mln(x+1)<1-m,∴-1<x<e-1
∴f(x)在[-1,e-1]上单调递增,在[e-1,+∞)上单调递减(4分)
(2)直线y=t与函数f(x)在[-,1]上的图象有两个交点等价于方程f(x)=t在[-,1]上有两个实数解(5分)
由(I)知,f(x)在[-,0]上单调递增,在[0,1]上单调递减.
又f(0)=0,f(1)=1-ln4,f(-)=-+ln2,且f(1)<f(-)(7分)
∴当t∈[-+ln2,0)时,方程f(x)=t有两个不同解,
即直线y=t与函数f(x)在[-,1]上的图象有两个交点(8分)
(3)要证:(1+a)b<(1+b)a
只需证bln(1+a)<aln(1+b),只需证:<(10分)
设g(x)=,(x>0)则g′(x)==.(12分)
由(I)知x-(1+x)ln(1+x)在(0,+∞)单调递减,∴x-(1+x)ln(1+x)<0即g(x)是减函数,而a>b
∴g(a)<g(b),故原不等式成立(14分)