问题
填空题
已知O是△ABC内任意一点,连接AO、BO、CO并延长交对边于A′、B′、C′,则
|
答案
猜想:若O四面体ABCD内任意点,AO,BO,CO,DO并延长交对面于A′,B′,C′,D′,则
+OA′ AA′
+OB′ BB′
+OC′ CC′
=1OD′ DD′
用“体积法”证明如下:
+OA′ AA′
+OB′ BB′
+OC′ CC′ OD′ DD′
=
+VO-BCD VA-BCD
+VO-CAD VA-BCD
+VO-ABD VC-ABD
=VO-ABC VD-ABC
=1VABCD VABCD
故答案为:
+OA′ AA′
+OB′ BB′
+OC′ CC′
=1OD′ DD′