问题
解答题
(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少个?
(2)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?
(3)将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种?
答案
解:(1)按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有个,
个,合并总计300个,
(2)因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:
①若甲乙都不参加,则有派遣方案种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有方法,所以共有;③若乙参加而甲不参加同理也有种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另两个城市有种,共有方法.所以共有不同的派遣方法总数为种
(3)先从4个盒子中选三个放置小球有种方法。注意到小球都是相同的,我们可以采用隔板法。为了保证三个盒子中球的颜色齐全,可以在4个相同的白球、5个相同的黑球、6个相同的红球所产生的3个、4个5个空挡中分别插入两个板。各有、、种方法。由分步计数原理可得=720种