问题
解答题
已知函数f(x)=x2+alnx.
(1)当a=-2时求f(x)的极值;
(2)若g(x)=f(x)+2x在[1,+∞)上单调递增,求实数a的取值范围.
答案
(1)当a=-2时
f(x)=x2-2lnx
f′(x)=2x-
=2 x 2x2-2 x
令f′(x)=0,则x=1
又∵当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,
∴当x=1时,f(x)极小=f(1)=1
(2)∵f(x)=x2+alnx
∴g(x)=x2+2x+alnx
∴g′(x)=2x+2+
=a x 2x2+2x+a x
∵g(x)在[1,+∞)上单调递增,
∴g′(x)≥0在[1,+∞)上恒成立
即u=2x2+2x+a≥0在[1,+∞)上恒成立
∵u=2x2+2x+a在[1,+∞)上单调递增
∴仅须u的最小值4+a≥0,即a≥-4即可
故实数a的取值范围为[-4,+∞)