问题
解答题
已知函数f(x)=
(1)若函数f(x)有极值,且在x=1处的切线与直线x-y+1=0平行,求实数a的取值范围; (2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值. |
答案
(1)∵f(x)=
x3+ax2-bx+1(x∈R,a,b为实数)1 3
∴f′(x)=x2+2ax-bx
∵f′(1)=1+2a-b=1即b=2a①
∵函数f(x)有极值
故方程x2+2ax-bx=0有两个不等实根
∴△=4a2+4b>0即a2+b>0②
由①②得a2+2a>0解得a<-2或a>0
故a的取值范围为(-∞,-2)∪(0,+∞)
(2)∵y=f(x)在区间[-1,2]上是单调减函数
∴f′(x)=x2+2ax-bx≤0在区间[-1,2]上恒成立
∴f′(-1)≤0且f′(2)≤0即1-2a-b≤0 4+4a-b≤0
所以a+b的最小值为3 2