已知f(x)=ax3+bx2+cx的极小值为-4,f′(x)>0的解集是{x|1<x<3}.
(1)求f(x)的解析式;
(2)当x∈[2,3]时,求g(x)=f′(x)+6(m-2)x的最大值.
(Ⅰ)∵f(x)=ax3+bx2+cx
∴f′(x)=3ax2+2bx+c,a>0,
又∵f′(x)>0的解集是{x|1<x<3}.
∴1,3分别为f(x)的极小值,极大值点,且a>0,
∴f′(1)=0,f′(3)=0,f(1)=-4
∴
,a+b+c=-4 3a+2b+c=0 27a+6b+c=0
解得a=-1,b=6,c=-9,
∴f(x)=-x3+6x2-9x,
(II)g(x)=f′(x)+6(m-2)x
=-3x2+12x-9+6(m-2)x
=-3x2+6mx-9
其图象是开口朝下,且以直线x=m为对称轴的抛物线
当m>3时,g(x)在区间[2,3]上为增函数,
此时当x=3时,g(x)取最大值18m-36
当2≤m≤3时,g(x)在区间[2,m]上为增函数,在区间[m,3]上为减函数,
此时当x=m时,g(x)取最大值3m2-9
当m<2时,g(x)在区间[2,3]上为减函数,
此时当x=2时,g(x)取最大值12m-21