问题
解答题
已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求实数a,b的值;并判断f(1)=10是极大值还是极小值.
答案
∵函数f(x)=x3+ax2+bx+a2
∴f'(x)=3x2+2ax+b,
又∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,
∴
解得:f′(1)=0 f(1)=10
或a=4 b=-11 a=-3 b=3
当a=4,b=-11时,f′(x)=3(x+
)(x-1),f(x)在(-∞,-11 3
)↑,在(-11 3
,1)↓,在(1,+∞)↑11 3
∴f(x)在x=1处取得极小值f(1)=10;
当a=-3,b=3时,f'(x)=3(x-1)2≥0,f(x)在R上单增,无极值.
∴a=4,b=-11;且f(1)=10是极小值.