已知函数f(x)=lnx+
(1)若x=2是函数f(x)的极值点,求实数a的值. (2)若函数f(x)在[2,+∞)上是增函数,求实数a的取值范围; (3)若函数f(x)在[1,e]上的最小值为3,求实数a的值. |
(1)由f(x)=lnx+
,a∈R,所以f′(x)=2a x
-1 x
=2a x2
.x-2a x2
定义域为(0,+∞),
由f′(x)=0,得x-2a=0,即x=2a.
所以,当x∈(0,2a)时,f′(x)<0,f(x)为减函数;
当x∈(2a,+∞)时,f′(x)>0,f(x)为增函数,
所以在(0,+∞)上f(x)有极小值点x=2a,由已知x=2是函数f(x)的极值点,
所以2a=2,则a=1;
(2)由f(x)=lnx+
,a∈R,所以f′(x)=2a x
-1 x
=2a x2
.x-2a x2
若函数f(x)在[2,+∞)上是增函数,则f′(x)=
≥0在[2,+∞)恒成立,x-2a x2
即x-2a≥0在[2,+∞)恒成立,也就是a≤
在[2,+∞)恒成立,x 2
所以a≤1.
所以使函数f(x)在[2,+∞)上是增函数的实数a的取值范围是(-∞,1];
(3)由(2)知,以f′(x)=
-1 x
=2a x2
,x-2a x2
若a≤0,则f′(x)>0,f(x)在(0,+∞)上为增函数,
f(x)在[1,e]上的最小值为f(1)=2a=3,a=
,不合题意;3 2
若a>0,由f′(x)=0,得x=2a.
当x∈(0,2a)时,f′(x)<0,f(x)为减函数,
当x∈(2a,+∞)时,f′(x)>0,f(x)为增函数,
所以当2a≤1,即a≤
时,f(x)在[1,e]上为增函数,1 2
最小值为f(1)=2a=3,a=
,不合题意;3 2
当2a≥e,即a≥
时,f(x)在[1,e]上为减函数,e 2
最小值为f(e)=1+
=3,a=e,符合题意;2a e
当1<2a<e,即
<a<1 2
时,f(x)在[1,e]上的最小值为f(2a)=ln2a+1=3,a=e 2
不合题意.e2 2
综上,使函数f(x)在[1,e]上的最小值为3的实数a的值为e.