问题 选择题
若定义在R上的函数f(x)满足f(1-x)=f(x+3),且(x-2)f′(x)<0,a=f (lo
g 2
5
),b=f (lo
g 4
15
),c=f (20.5),则a,b,c的大小关系为(  )
A.a>b>cB.c>b>aC.b>a>cD.c>a>b
答案

∵定义在R上的函数f(x)满足f(1-x)=f(x+3),∴函数y=f(x)的图象关于直线x=

1+3
2
=2对称.

∵log25>log24=2,∴a=f(log25)=f(4-log25).

4-log25=log2

16
5
log2
15
=log415

又∵

2
<4-log25,∴
2
<4-log25<log415<2

∵(x-2)f′(x)<0,

∴当x<2时,f(x)>0,∴函数f(x)在(-∞,2)上单调递增,

∴f(20.5)<f(4-log25)<f(log415),即c<a<b.

故选C.

判断题
多项选择题