问题
填空题
函数f(x)=2x3-6x2+7的单调减区间是______.
答案
∵f(x)=2x3-6x2+7,
∴f′(x)=6x2-12x,
由6x2-12x≤0可得:0≤x≤2
∴函数f(x)=2x3-6x2+7的单调减区间是[0,2].
故答案为:[0,2].
函数f(x)=2x3-6x2+7的单调减区间是______.
∵f(x)=2x3-6x2+7,
∴f′(x)=6x2-12x,
由6x2-12x≤0可得:0≤x≤2
∴函数f(x)=2x3-6x2+7的单调减区间是[0,2].
故答案为:[0,2].