问题
解答题
已知函数f(x)=x3-ax2+bx+c.
(Ⅰ)若a=3,b=-9,求f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象上存在点P,使P点处的切线与x轴平行,求实数a,b所满足的关系式.
答案
(Ⅰ)若a=3,b=-9,
则f'(x)=3x2-2ax+b=3x2-6x-9=3(x+1)(x-3).
令f/(x)>0,即3(x+1)(x-3)>0.则x<-1或x>3.
∴f(x)的单调增区间是(-∞,-1),(3,+∞).
令f/(x)<0,即3(x+1)(x-3)<0.则-1<x<3.
∴f(x)的单调减区间是(-1,3).
(Ⅱ)f'(x)=3x2-2ax+b,设切点为P(x0,y0),
则曲线y=f(x)在点P处的切线的斜率k=f'(x0)=3x02-2ax0+b.
由题意,知f'(x0)=3x02-2ax0+b=0有解,
∴△=4a2-12b≥0即a2≥3b.