问题
填空题
某几何体的一条棱长为
|
答案
由棱和它在三视图中的投影扩展为长方体,
三视图中的三个投影,是三个面对角线,
则设长方体的三度:x、y、z,
所以x2+y2+z2=7,x2+y2=a2,y2+z2=b2,
x2+z2=6可得a2+b2=8
∵(a+b)2≤2(a2+b2)
a+b≤4
∴a+b的最大值为:4
故答案为:4
某几何体的一条棱长为
|
由棱和它在三视图中的投影扩展为长方体,
三视图中的三个投影,是三个面对角线,
则设长方体的三度:x、y、z,
所以x2+y2+z2=7,x2+y2=a2,y2+z2=b2,
x2+z2=6可得a2+b2=8
∵(a+b)2≤2(a2+b2)
a+b≤4
∴a+b的最大值为:4
故答案为:4