问题
解答题
设函数f(x)=x-
(Ⅰ)当a=3时,求f(x)的极值; (Ⅱ)讨论函数f(x)的单调性. |
答案
(Ⅰ)函数的定义域为(0,+∞),
当a=3时,f′(x)=1+
-2 x2
=3 x
=x2-3x+2 x2
,(x-1)(x-2) x2
令f′(x)=0,解得x=1或x=2,
当0<x<1或x>2时,f′(x)>0,当1<x<2时,f′(x)<0,
所以当x=1时f(x)取得极大值f(1)=-1,当x=2时f(x)取得极小值f(2)=1-3ln2;
(Ⅱ)f′(x)=1+
-2 x2
=a x
,x2-ax+2 x2
令g(x)=x2-ax+2,其判别式△=a2-8,
①当|a|≤2
时,△≤0时,f′(x)≥0,故f(x)在(0,+∞)上单调递增;2
②当a<-2
时,△>0时,g(x)=0的两根都小于0,所以在(0,+∞)上f′(x)>0,2
故f(x)在(0,+∞)上单调递增;
③当a>2
时,△>0,g(x)=0的两根为:x1=2
,x2=a- a2-8 2
,且都大于0,a+ a2-8 2
当0<x<x1或x>x2时f′(x)>0,当x1<x<x2时f′(x)<0,
故f(x)在(0,
)和(a- a2-8 2
,+∞)上递增,在(a+ a2-8 2
,a- a2-8 2
)上递减,a+ a2-8 2
综上,当a≤2
时f(x)(0,+∞)上单调递增;当a>22
时,f(x)在(0,2
)和(a- a2-8 2
,+∞)上递增,在(a+ a2-8 2
,a- a2-8 2
)上递减;a+ a2-8 2