问题
选择题
有5盆互不相同的玫瑰花,其中黄玫瑰2盆、白玫瑰2盆、红玫瑰1盆,现把它们摆放成一排,要求2盆白玫瑰不能相邻,则这5盆玫瑰花的不同摆放种数是( )
A.120
B.72
C.12
D.36
答案
答案:B
题目分析:第一步:先摆黄玫瑰和红玫瑰,摆法有种;第二步:再摆白玫瑰,由于黄玫瑰和红玫瑰之间有4个位,则有摆法
种,所以这5盆玫瑰花的不同摆放种数是
种。故选B。
点评:关于排列和组合的题目,常用到捆绑法和插位法。捆绑法是将一些对象看作一个对象进行排列;插位法是将一些对象进行排列后,再对剩下的对象进行排列。本题用到插位法。