问题 解答题
已知函数f(x)=ax-ex(a>0).
(Ⅰ)当a=
1
2
时,求函数f(x)的单调区间;
(Ⅱ)当1≤a≤1+e时,求证:f(x)≤x.
答案

(Ⅰ)当a=

1
2
时,f(x)=
1
2
x-ex
,令f′(x)=
1
2
-ex=0,x=-ln2

当x<-ln2时,f′(x)>0;当x>-ln2时,f′(x)<0,

∴函数f(x)的单调递增区间为(-∞,-ln2),递减区间为(-ln2,+∞).

(Ⅱ)证明:令F(x)=x-f(x)=ex-(a-1)x,

(1)当a=1时,F(x)=ex>0,∴f(x)≤x成立; 

(2)当1<a≤1+e时,F′(x)=ex-(a-1)=ex-eln(a-1)

当x<ln(a-1)时,F′(x)<0;当x>ln(a-1)时,F′(x)>0,

∴F(x)在(-∞,ln(a-1))上递减,在(ln(a-1),+∞)上递增,

∴F(x)≥F(ln(a-1))=eln(a-1)-(a-1)ln(a-1)=(a-1)[1-ln(a-1)],

∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,

∴F(x)≥0,即f(x)≤x成立.

综上,当1≤a≤1+e时,有f(x)≤x.

单项选择题
判断题