问题 选择题
某几何体中的一条线段长为
7
,在该几何体的正视图中,这条线段的投影是长为
6
的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为(  )
A.2
2
B.2
3
C.4D.2
5
答案

结合长方体的对角线在三个面的投影来理解计算.如图设长方体的长宽高分别为m,n,k,

由题意得

m2+n2+k2
=
7
m2+k2
=
6
⇒n=1
1+k2
=a
1+m2
=b

所以(a2-1)+(b2-1)=6⇒a2+b2=8,

∴(a+b)2=a2+2ab+b2=8+2ab≤8+a2+b2=16⇒a+b≤4当且仅当a=b=2时取等号.

故选C.

选择题
单项选择题