问题
解答题
观察下列等式:32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;92-72=32=8×4…这些等式反映了正整数的某种规律.
(1)设n为正整数,试用含m的式子,表示你发现的规律;
(2)验证你发现规律的正确性,并用文字归纳出这个规律.
答案
(1)(2n+1)2-(2n-1)2=8n;
(2)(2n+1)2-(2n-1)2
=4n2+4n+1-(4n2-4n+1)
=8n;
即(2n+1)2-(2n-1)2=8n,
故两个连续奇数的平方差是8的倍数.