设函数f(x)=(x+2)2-2ln(x+2).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若关于x的方程f(x)=x2+3x+a在区间[-1,1]上只有一个实数根,求实数a的取值范围.
(Ⅰ)函数f(x)的定义域为(-2,+∞),
因为f′(x)=2[(x+2)-
]=1 x+2
,2(x+1)(x+3) x+2
所以 当-2<x<-1时,f′(x)<0;
当x>-1时,f′(x)>0.
故f(x)的单调递增区间是(-1,+∞);
f(x)的单调递减区间是(-2,-1)(注:-1处写成“闭的”亦可)
(Ⅱ)由f(x)=x2+3x+a得:x-a+4-2ln(2+x)=0,
设g(x)=x-a+4-2ln(2+x),求导数得g′(x)=1-
=2 x+2 x x+2
在区间[-1,1]上加以讨论:
当-1<x<0时,g′(x)<0,而当0<x<1时,g′(x)>0,
故g(x)在[-1,0]上递减,在[0,1]上递增,
要使方程f(x)=x2+3x+a在区间[-1,-1]上只有一个实数根,
则必须且只需g(0)=0,或
或g(-1)<0 g(1)≥0 g(-1)≥0 g(1)<0
接下来分类:
①当g(0)=0时,解之得a=4-2ln2;
②当
时,g(-1)<0 g(1)≥0 -1-a+4-2ln(2-1) <0 1-a+4-2ln3≥0
解之得a∈φ
③当
时,g(-1)≥0 g(1)<0 -1-a+4-2ln(2-1) ≥0 1-a+4-2ln3<0
解之得a∈(5-2ln3,3]
综上所述,得a=4-2ln2,或a∈(5-2ln3,3]
所以实数a的取值范围(5-2ln3,3]∪{4-2ln2}.