问题
解答题
已知函数f(x)=(x2+ax+b)ex,且f(0)=7,x=1是它的极值点.
(1)求f(x)的表达式;
(2)试确定f(x)的单调区间;
(3)若函数g(x)=f(x)-m(m∈R)恰有3个零点,求m的取值范围.
答案
(1)∵f(0)=7,∴b=7.
又f′(x)=[x2+(2+a)x+a+b]ex,x=1是f(x)的极值点,
∴f′(1)=0,即(10+2a)e=0,∴a=-5,
∴f(x)=(x2-5x+7)ex;
(2)∵f′(x)=(x2-3x+2)ex=(x-1)(x-2)ex
令f′(x)>0得x<1或x>2;令f′(x)<0得1<x<2,
∴f(x)的单调增区间为(-∞,1)和(2,+∞),f(x)的单调减区间为(1,2);
(3)由(2)知f(x)最大=f(1)=3e,f(x)最小=f(2)=e2.
若g(x)=f(x)-m(m∈R)恰有3个零点,则只需y=f(x)与y=m的图象有三个交点.
由于f(x)在(-∞,1)单调递增,且f(-1)=
<f(2),13 e
故只要f(x)最小<m<f(x)最大,∴e2<m<3e.
故当e2<m<3e时,g(x)=f(x)-m(m∈R)恰有3个零点.