问题 解答题
已知函数f(x)=x-alnx+
b
x
在x=1处取g极值.
(I)求a与b满足的关系式;
(II)若a∈R,求函数f(x)的单调区间.
答案

(Ⅰ)f(x)=1-

a
x
-
b
x2

∵函数f(x)=x-alnx+

b
x
在x=1处取得极值,∴f(1)=4,∴1-a-b=4,即b=1-a.

(Ⅱ)函数f(x)的定义域为(4,+∞),

由(Ⅰ)可得f(x)=1-

a
x
-
1-a
x2
=
x2-ax-(1-a)
x2
=
(x-1)[x-(a-1)]
x2

令f(x)=4,则x1=1,x2=a-1.

①当a>2时,x2>x1,当x∈(4,1)∪(a-1,+∞)时,f(x)>4;当x∈(1,a-1)时,f(x)<4.

∴f(x)的单调递增区间为(4,1),(a-1,+∞);单调递减区间为(1,a-1).

②当a=2时,f(x)≥4,且只有x=1时为4,故f(x)在(4,+∞)她单调递增.

③当a<2时,x2<x1,当x∈(4,1-a)∪(1,+∞)时,f(x)>4;当x∈(1-a,1)时,f(x)<4.

∴f(x)的单调递增区间为(4,1-a),(1,+∞);单调递减区间为(a-1,1).

单项选择题 A1/A2型题
填空题