问题
解答题
两个连续偶数的平方差能被4整除吗?为什么?
答案
设两个连续偶数为2n,2n+2,则有
(2n+2)2-(2n)2,
=(2n+2+2n)(2n+2-2n),
=(4n+2)×2,
=4(2n+1),
因为n为整数,
所以4(2n+1)中的2n+1也是正整数,
所以4(2n+1)是4的倍数.
两个连续偶数的平方差能被4整除吗?为什么?
设两个连续偶数为2n,2n+2,则有
(2n+2)2-(2n)2,
=(2n+2+2n)(2n+2-2n),
=(4n+2)×2,
=4(2n+1),
因为n为整数,
所以4(2n+1)中的2n+1也是正整数,
所以4(2n+1)是4的倍数.