问题
解答题
计算:12-22+32-42+52-62+…+20012-20022+20032-20042.______
答案
12-22+32-42+52-62+…+20012-20022+20032-20042=-[(22-12)+(42-32)+(62-52)+…+(20022-20012)+(20042-20032)],
利用平方差公式12-22+32-42+52-62+…+20012-20022+20032-20042=-[(22-12)+(42-32)+(62-52)+…+(20022-20012)+(20042-20032)]
=-[(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+(2002+2001)+(2004+2003)]
=-(1+2+3+4+…+2002+2003+2004)=(1+2004)×2004 2
=-2 009 010.